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This paper is concerned with the situation in which the topology of space (or 
space-time) changes to produce a new manifold that is cobordant with, but not 
necessarily of the same homotopy type as, the original manifold. The relevance 
to kink field theories is discussed. It is shown that whenever the concept of 
degree of mapping is applicable then the degree is conserved under the bordism 
relation. This has the consequence that certain (topological) fermions arising in 
general relativity are always conserved in number, even when changes in 
topology are permitted. 

I. INTRODUCTION 

The classification of base-point-preserving mappings qg:X--~Y in 
which the manifold Y is topologically nontrivial is currently of interest in 
elementary particle field theory. The different homotopy classes [X, Y] of 
base-point-preserving mappings q0 are associated with different types of 
particlelike structures called "kinks" (Finkelstein, 1966). For most theories 
of physical interest, the domain manifold X is taken to be S 3, or equiv- 
alently R 3 with q0 mapping the region at infinity into some fixed point 
y0E Y. General relativity, for which X may be chosen to be a more 
complicated manifold than S 3 or R 3, provides an important exception. For 
example, X-- S 1 • $2•  R ~ represents a space-time manifold with the 
"wormhole" topology. 

The essential power of kink theory lies in two results: (i) the number 
of kinks is a conserved quantity; (ii) kinks can be used to describe 
fermions in terms of the more basic mesons. The conservation of kinks 
holds for topological reasons and is independent of any particular symme- 
try of the Lagrangian. In many of the theories studied, the kinks have been 
shown to be (classical analogs of) fermions (Williams and Zvengrowski, 
1977). Conditions (i) and (ii) taken together then furnish a theoretical 
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explanation of the experimentally observed conservation of fermion num- 
ber. 

The above analysis rests on the assumption that space or space-time 
is continuous. This assumption is generally accepted for large-scale phe- 
nomena, but Wheeler (1968) has pointed out that for general relativistic 
theories of phenomena on a scale of the order of the Planck length, 10 -33 
cm, quantum fluctuations in the curvature of space-time may be sufficient 
to produce alterations in topology. These violent changes in topology 
could be expected to affect the kink number. Suppose, for example, a 
space-time manifold that is $3•  R ~ changes to one that is SIx S2X R i. 
Consider all type-(0,2) Lorentz metric tensor fields g on a space-time 
manifold 91L 4. Let Z denote the group of integers and Z 2 denote the group 
of integers modulo 2. When r 4 = S 3 X R 1 the set of homotopy classes of g 
is isomorphic to Z, but when e)E4 = S ~ • S 2 • R ~ it is isomorphic to Z �9 Z 2 
(Shastri, Williams, and Zvengrowski, 1980). Thus even the classifying 
scheme for the kinks is different in the two cases. 

At a scale of 10 - ~  cm and below new particles can be created and it 
is known that certain quantum numbers (strangeness, parity, total iso- 
spin ... .  ) are not always conserved. Thus the nonconservation of any kink 
labels that correspond to such quantum numbers would be an asset rather 
than a weakness of kink theory. However, quantities such as fermion 
number, baryon number, lepton number, and electric charge are known to 
be conserved under all circumstances and it would be most embarrassing 
for kink theory if kink labels corresponding to such quantities were not 
conserved at all times. 

In this paper we shall investigate the problem of conservation/non- 
conservation of kinks for mappings between manifolds X and Y when the 
topology of the domain X is allowed to vary so that X can be replaced by a 
new manifold ?~ cobordant though not necessarily homeomorphic or 
homotopically equivalent to X. When X and Y have the same dimension it 
will be shown that the degree of mappings q0:X---~ Y is always conserved. 
This has an important consequence for general relativity, namely, that the 
number of fermions (i.e., kinks of half-odd-integer spin) is conserved. 

First, we shall quote some standard results from bordism theory, 
many of which can be found in the book by Conner and Floyd (1964). 

2. BORDISM, COBORDISM, AND HOMOLOGY 

Let X n,.~n, ym be C oo compact oriented manifolds without boundary 
and of dimensions n, n, and m, respectively. Let 
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be two C oo mappings. The C ~ pairs (X",f)  and 0~",g) are said to be 
bordant if and only if there exists a Coo pair (W"+I,F) where W "+1 is an 
(n + 1)-manifold with boundary 0W "+ 1 = X" @ ( - ) ~ " )  and F is a mapping 
such that FIX"=f, FI~'=g. The dot denotes disjoint union, and - X "  
denotes the manifold X" with reversed orientation. If the above conditions 
hold for the special case in which ym is a single point then we say that the 
manifolds X" and )~" are cobordant. Clearly bordancy is a stronger 
condition than cobordancy since, for any ym, (X",f) being bordant to 
()~",g) will imply that X" will be cobordant to )~". 

A sim~ole example of cobordancy is obtained by choosing X 1 = S ~ and 
choosing X 1 = S 1 @ S 1 (Figure 1). The manifold )~ l is not connected. The 
higher-dimensional generalizatiofis of such "trouser worlds" are ruled out 
in general relativity (Kundt, 1967), and such situations will not be consid- 
ered in this paper. Another example is obtained by choosing X 2= S 2 and 
)~2= S ~ • S ~. The manifold W 3 can be chosen to be the closed unit 3-disk 
(i.e., closed unit ball) with a hole shaped like a solid open torus cut out 
from the interior (Figure 2). Alternatively, W 3 can be chosen as a solid 
closed torus from the interior of which an open unit 3-disk has been 
removed (Figure 3). 

We shall show below that bordism is an equivalence relation (i.e., 
reflexive, symmetric, and transitive). The equivalence class of the C oo pair 
(X",f )  will be denoted by [X",f]. The set of these classes for a fixed ym is 
called the nth bordism homology group of Y" and is denoted by ~2,(Ym). 
This set forms an Abelian group under the operation induced from disjoint 
union. The identity element is the class of any Coo sphere pair (S" , f )  
where S" denotes the standard unit n-sphere in R "+ 1. The additive inverse 
of an element [X",f] is [ - X ' , f ] .  It only remains to prove transitivity, and 
this can be done by making use of the collaring lemma (Conner and Floyd, 
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1964, p~ 7), which states: For any compact, boundaryless, connected C ~~ 
manifold X" there is an open set U containing OX" and a diffeomorphism 

of U onto OX'x[0,1] with q0(x)= (x, 0) for all xEaX.7. Hence if X" is 
W n+l the cobordant to X" via W~ '+] and X" is cobordant to X" via 2 , 

collaring lemma implies the existence of a diffeomorphism of an open 
neighborhood of .~" in W~ '+l to one of .~n in W~ '+l. Thus transitivity 
follows. 

Suppose that Y" is a single point that we denote by an asterisk. The 
group [2n(Y'n) becomes [2,(*), which we shall abbreviate to [2,. The group 
f~ is called the nth oriented cobordism group of Thorn (or the oriented 
cobordism group of n-manifolds). It is a well-known fact that for 0 <n < 3, 
any two orientable n-manifolds are cobordant. Hence [2~..[22~93~0, 
where 0 denotes the group identity. In the case of 0-manifolds (i.e., points) 
it is clear that a manifold consisting of p points is cobordant with a 
manifold consisting of q points if and only if p = q. It follows that [20 ~ Z. 

We shall now discuss the relationship between bordism groups and 
homology groups. Let Y be any manifold and let H,(Y;Z) denote the 
(singular) homology group of Y with integer coefficients. Let us recall how 
H,(Y;Z) is defined. Let A" denote the standard n-simplex and call any 
continuous mapping f:A"--->Y a "singular n-simplex.'" Consider the free 
Abelian group on singular n-simplices, i.e., the group of finite integral sums 
called "singular n chains," Y.inf, niEZ. The operation of "taking the 
boundary" is essentially given by taking ~f=flOA" and extending linearly 
to obtain the definition of 3(Y~nJi) (Eilenberg and Steenrod, 1952). Of 
course, the definition is such that 33--0. An "n-cycle" is defined to be a 
singular n chain with vanishing boundary, i.e., ~(Einf)=0.  One obtains 
the homology equivalence relation on the set of n-cycles of Y by defining 
two n-cycles to be "homologous" if and only if they constitute the 
boundary of some singular (n + 1)-chain. The set of homology equivalence 
classes of n-cycles of Y is denoted by H,(Y, Z). From this discussion it is 
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clear that the bordism relation of C OO pairs is, strictly speaking, a special 
kind of singular homology. From this observation it follows that there is a 
natural homomorphism 

g:~2,,( Y")--~ Hn( Y"; Z ) 

obtained by defining g([Xn,f])=f,(tr x )  where gx E H~(X~;Z) denotes the 
orientation class of X ~, and where 

f,:Hn(X";Z)--~H.( Ym;Z) 

is the usual induced homomorphism on homology. 
Ren6 Thom was the first to give an example of a manifold ym and an 

integer n such that /t is not an epimorphism (i.e., so that there exists a 
singular integral homology class of ym which is not the image of any 
bordism class under /t). The example necessarily involves odd torsion 
groups (i.e., finite groups in which every dement apart from the identity 
has odd order) in the homology of Y" because spectral sequence argu- 
ments due to Atiyah show that if there is no odd torsion in the homology 
of ym then/t  is an epimorphism. In fact, in the case of no odd torsion 
there is a spectral sequence isomorphism (Conner and Floyd, 1964, p. 42) 

~n( Ym)~ ~, H,~(Y";flp) 
m + p ~ n  

where ~2p denotes the oriented cobordism group of Thom. These cobordism 
groups have been computed by Thom and Wall (Conner and Floyd, 1964). 

We shall now consider the special case where m = n. Let f:Xn--. Y~. If 
X~,Y ~ are orientable n-manifolds then H~(Xn;Z)~Hn(Yn;Z)~Z and 
jr.: H~ (X ~; Z) ---) H~ ( Y ~; Z)  is simply multiplication by some integer N. The 
integer N is called the degree of f, deg f (Spanier, 1966). We wish to 
establish the important fact that the degree of the map f of a C ~ pair 
(X~,f) is preserved under the bordism equivalence relation. 

Proposition. If (Xn,f) and ()~n,g) are bordant 

X L ' ~  y n 

then deg f =  deg g. 
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Proof. Consider 

= x ~  g.(,,/) 
If o n represents the orientation class in Hn(Yn;Z) then f,(onX)=deg f'on 
and g,(o x)  = deg g.o n and consequently deg f =  deg g. �9 

This is particularly interesting because the manifolds X" and ~n need 
not be even homotopically equivalent when they are cobordant. The above 
proposition and the fact that all 3-manifolds are cobordant leads to the 
following corollary for the n = 3 case. 

Corollary. (X3,f) and (~3,g) are bordant, 

y3 

if and only if deg f =  deg g. 

Proof. The "if" part follows from the spectral sequence isomorphism 
above. [The fact that ~ o ~ Z  and f~x~22~f13~0 implies ~3(Y3),~ 
H3(Y3;Z)~-~Z.] �9 

The important consequence of the above proposition is that kink 
labels associated with the degree of mapping will be conserved under 
topology change, although other kink labels may change. The relevance of 
this to general relativity will be discussed in the following section. 

3. GENERAL RELATIVITY 

Let the space-time manifold 6'~4 be a bundle space whose fiber is R 1 
and whose base is any compact, boundaryless, connected, orientable 
3-manifold, M. The compactness assumption for M is an artifice rather 
than a profound assumption about the large-scale topology of the universe. 
A topological structure of the type we have in mind is intended to be a 
model of an elementary particle, and hence the topologically interesting 
region of 3-space is limited in extent and can be contained within some 
2-sphere. This is the region that we wish to study. It makes no difference to 
the topological analysis if the 2-sphere boundary is identified to a point. 
This will then produce a compact, boundaryless 3-manifold which we will 
call M. 

The application of cobordism theory to general relativity has been 
discussed by many authors. In particular, Yodzis (1972, 1973) has studied 
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so-called "Lorentz cobordism" and has shown it to be consistent with 
causality, geodesic completeness, and finite, positive energy density. A 
Lorentz cobordism requires an everywhere nonzero vector field to be 
placed on M. Since M is a 3-manifold, this is always possible. Thus 
throughout this section, for "(co)bordism" we could equally well read 
"Lorentz (co)bordism." 

The kink labels of general relativity are the labels for the homotopy 
classes of type (0,2) Lorentz metric tensors g. The set of these homotopy 
classes is known to be isomorphic to [M, RP3], where RP 3 denotes real 
three-dimensional projective space. Two results due to Shastri, Williams, 
and Zvengrowski (1980) are relevant. The first of these states that 
[M, RP 3] is always the direct sum of Z and a (possibly zero) number of Z 2 
terms. 

[ M, R p 3 ] . ~ Z  ~) Z2~). �9 ~ Z 2 

The second result states that metrics corresponding to maps ~p:M.--~RP 3 
which are of degree 2 will have half-odd-integer spin and so represent 
fermions-- in the sense that it is possible to define double-valued spinor 
wave functionals xI,(q~) on the sectors of mapping space containing such 
maps. Indeed, a mapping of degree 2N will contain N fermions. [One may 
ask what happens if the degree is not an even number. For manifolds such 
as S 3 or S t • S 2, all maps have even degree. However, for M = RP 3 maps 
of degree 1 can occur. The objects described by such odd-degree maps will 
represent kinks of a certain type, although their physical interpretation is 
unclear. They will not be considered in this paper, although further details 
are given by Shastri, Williams and Zvengrowski (1980).] 

Given a C ~~ pa~ (M,~0) let us suppose that a change in topology leads 
to a new C ~ pair (M, ff) that is bordant to the original (M, rp). Clearly, the 
labels associated with the Z 2 terms in [M, RP 3] will not be conserved in 
general. However, the degree of mapping is conserved so that deg 9~=2N 
implies deg 93---2N. Thus the number of fermions present cannot change. 

In the next section we treat a specific example where M =  S 3 and 
3#= S I •  S 2. The mapping ~p:S3---~RP 3 is chosen to be the usual double 
covering of RP 3 by S 3. It is a map of degree 2 and represents one fermion 
(and, at the same time, one kink). 

4. AN EXAMPLE 

We shall consider (6"~4, g) for the case in which ~ 4 undergoes a 
change in topology from $3•  R l to $ I •  $2• R 1. As mentioned before, 
we need to consider mappings from some 3-manifold M into RP 3. In the 
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notation of Section 2, let X 3 =  S 3, .~3= $ 1 •  S z and y3=Rp3. Mappings 
f:S3-~RP 3 are classified by a single integer N ~ Z  and mappings g : S l •  
S 2-~Rp3 are classified by a pair of integers (N, k ) ~  Z �9 Z z. For both the 
X 3 case and the .~3 case, the integer N is usually taken to be half the 
degree of the map. Let x:S3-~RP 3 be the usual double covering map. 
Note that deg x =2,  and N= 1. Points in S 3, S 2 and S ! • S 2 are labeled as 
follows: 

4 

(dP,,eP2,r162 ~$3, E q~,--12- 
a ~ l  

3 

E 
i=1  

(fl, I~)~S~•  z, O<fl<2~r  

Define ~:[0,2~r] • sZ-~s  3 by 

r = (/~ sin I fl, cos�89 fl) 

Define the quotient map (i.e., identification map) q:[0, 2~r] • S2-~SI• S 2 
by 

q(fl, l~)=(fl, l~) for fl~O,2cr 

and 

q ( 0 , # ) = q ( 2 ~ , ~ ) = ( * , # )  

where * is the base point in S 1. The following diagram commutes: 

[0,2~r] •  2 ~ ; S 3 

S 1 N  S 2 . . . . .  - ~  R p  3 

is the unique induced map which agrees identically with ~/, away from 
(*,S 2) and is the antipodal map on (*,S 2) [i.e., ~ ( - x ) =  -~ (x ) ] .  Note  the 
importance of the • factor in the formula for q~. Because of this, we 2 
obtain deg ~--2.  Note  that ~ is a map of type (1, 1 ) E Z ~ Z  2. 

We now give an explicit construction of a suitable manifold W 4 and 
mapping F: W4-~RP 3 which is a bordism between ~ and x. The mapping 
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tp extends to 
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~: [0,2~] X ( D 3 -  C)---~S 3 

where C is a small open 3-disk about the origin of the closed unit 3-disk 
D 3, via 

V " 1 1 
= 

where 0 <  ilrl12= 3 2 E i-~Pi < 1. Furthermore, the above commutative diagram 
extends to 

[0 ,2~ ' ]  X ( D  3 -  C )  > S 3 

i ~ l 
S 1X(D 3 -  C) . . . . . .  ~,RP 3 

by using the diffeomorphisms 

and 

[0,2~'] X ( D 3 - C ) , ~  [0,2~r] X S2X [ 1,l] 

S 1 X ( D  3 -  C ) , ~ , S  1 x S 2 X  [1,/] 

where l =  Ilpll is a radial coordinate, I:~0. The quotient map Q is defined 
by 

.) 
Thus Q preserves the radial coordinate 1. 

We now show the existence of a continuous extension of tk to S ~ • D 3. 
First of all, Q extends to [0, 2~r] • D 3 by 

q B,I- ~ ,llvll , 
Q (  fl, v) = 

[ (B(mod2~r),0), 

This works because the pair 

o---0. 
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is identified with v E D 3_ C and 

Secondly, ~ is dear ly  not onto for it misses (0,0,0, 1) and it follows that 
there exists an open 3-disk a round  (0,0,0, 1) which does not  intersect the 
image of ~. Hence the image of ~b lies in a closed 3-disk 13. Since 13 is 
homeomorphic to the standard 3-cube we may apply the Tietze extension 
theorem (Dugundji, 1966) to obtain a continuous map of the whole of 
[0, 2~r] • D 3. With a mild abuse of language, we shall denote this extension 
by ~ also. We then have the diagram 

[0,2~]  X D  3 ' S 3 

i ~ b 
S 1 x D  3 . . . . . .  ~. R p  3 

where ~b is the unique map which makes the diagram commute and extends 
the original ff whose domain was S l >((D 3 - C). Note that ~[S 1 • C is just 
the Tietze map followed by K on (0,2~r)• C. 

If we consider a small arc A through the base point * in S 1 and let B 
denote an open 4-disk with 8B in the complement of A X C, then we can 
define 

which is then given by the formula for q~, above, away from the set 
{(fl, v)[~E C }. We take W 4 = S 1 • D 3 _ B and define the bordism_ map F 
to be qJ[ W 4, This map is not  necessarily C ~ on S t •  C. However, F 
may be approximated in a standard way by a C oo map homotopic to the 
original and e-close to it (relative to any convenient Riemannian metric on 
RP 3) and which agrees with the original F wherever it is C ~ (Steenrod, 
1951, pp. 25-28). 

Now q~ has degree two on S 3, since it is bordant  to a map of degree 
two. By the corollary proved above, equal degrees imply bordism, so that 
and r are bordant. We attach this bordism to (W,F) along (S3,q~) and the 
transitivity of the bordism relation yields the desired bordism of (S  I •  
S2,~) and (S3,K). 
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5. S U M M A R Y  AND C O N C L U S I O N S  

We have studied the case of field theories in which the domain  
manifold of the field variables is allowed to change to a different, although 
cobordant,  manifold. It  is pointed out that the degree of the mapping  
defined by the field variables will always be conserved. In general relativ- 
ity, it is known that fermions can arise as topological half-odd-integer spin 
structures related to the homotopy  class of the metric. This paper  has 
shown that, in spite of the violent fluctuations of topology in the " space -  
time foam"  of the manifold, the number  of such topological fermions is 
strictly conserved. 
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